YEDİTEPE UNIVERSITY

FACULTY OF ENGINEERING

COURSE INFORMATONCourse
CodeMSN 533Course Title
Nanomaterials for Enegy Conversion and StorageSemesterCreditsECTSC +P + L
HourPrerequisites23103 + 0 + 0-

Language of Instruction		Course Level	Course Type	
English		Graduate	Elective	
Course Coordinator	Prof. Dr. Ta	ner Akbay		
Instructors	Prof. Dr. Taner Akbay			
Assistants	Res. Assist. Burcu Üçok			
Goals	storage syst supercapac the journey	course will focus on advanced electrochemical energy conversion and ge systems including fuel cells, lithium-ion batteries, and capacitors; Hydrogen storage; Advanced thermal storage. Through urney in this course, students are anticipated to understand why and hese systems are advantageous in renewable energy applications.		
Content	storage and Knowledge commercial	vstematic knowledge about different types of nanomaterials for energy brage and conversion. howledge about limitations, existing issues and wider aspect concerning immercialization of novel techniques, including the impact on hvironment, safety and economy.		
Contribution of the Course to the Professional Education	Ability to u storage.	inderstand the basic technic	ques for energy conversion and	

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
Ability to write effective reports and comprehend written reports, prepare design and production reports,	7a	2	C,D
Ability to make effective presentations,	7c	2	C,D

Teaching	1: Lecture by instructor, 2: Lecture by instructor with class discussion, 3:
Methods:	Problem solving by instructor, 4: Use of simulations, 5: Problem solving

YEDİTEPE UNIVERSITY

FACULTY OF ENGINEERING

assignment, 6: Reading assignment, 7: Laboratory work, 8: Term research paper, 9: Presentation by guest speaker, 10: Sample Project Review, 11: Interdisciplinary group working, 12: ...

AssessmentA: Written exam, B: Multiple-choice exam C: Take-home quiz, D: ExperimentMethods:report, E: Homework, F: Project, G: Presentation by student, H: ...

	COURSE CONTENT	
Week	Topics	Study Materials
1	Introduction to energy harvesting, conversion and storage materials	Lecture Notes
2	Structure and properties of bulk materials and their surfaces	Lecture Notes
3	Fundamentals of energy harvesting	Lecture Notes
4	Electronic and band structure of semiconductors	Lecture Notes
5	Semiconductor junctions	Lecture Notes
6	Hetero- homo- and Schottky junctions	Lecture Notes
7	Electronic band alignment and band bending	Lecture Notes
8	Materials for energy harvesting by photovoltaics	Lecture Notes
9	Materials for energy conversion by fuel cells	Lecture Notes
10	Materials for energy storage by rechargeable batteries	Lecture Notes
11	Materials for energy storage by supercapacitors	Lecture Notes
12	Discussion on individual term assignments	-
13	Discussion on individual term assignments	-
14	Student presentations	-
15	Student presentations	-

	RECOMMENDED SOURCES
Lecture Notes	Notes and presentation slides
Additional Resources	Open literature

	MATERIAL SHARING
Documents	Lecture Notes
Assignments	Individual Term Project
Exams	Student Presentations

YEDİTEPE UNIVERSITY

FACULTY OF ENGINEERING

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Term Presentations	1	60	
Final Report	1	40	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40	
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60	
Total		100	

COURSE CATEGORY

Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM OUTCOMES	
No	Program Learning Outcomes	cheo ✓
1a	Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline,	
1b	Ability to use theoretical and applied knowledge in these areas in complex engineering problems.	
2a	Ability to identify, formulate, and solve complex engineering problems,	
2b	Ability to select and apply proper analysis and modeling methods for this purpose.	
3a	Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result,	
3b	Ability to apply modern design methods for this purpose.	
4a	Ability to devise, select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice.	
4b	Ability to employ information technologies effectively.	
5a	Ability to design experiments for investigating complex engineering problems or discipline specific research questions,	
5b	Ability to conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.	
6a	Ability to work efficiently in intra-disciplinary teams,	
6b	Ability to work efficiently in multi-disciplinary teams,	
6c	Ability to work individually.	\checkmark
7a	Ability to communicate effectively in Turkish, both orally and in writing,	
7b	Knowledge of a minimum of one foreign language,	\checkmark

FACULTY OF ENGINEERING

Ability to write effective reports and comprehend written reports, 7c ~ prepare design and production reports, Ability to make effective presentations, 7d Ability to give and receive clear and intelligible instructions. 7e Recognition of the need for lifelong learning, ability to access information, ability 8a to follow developments in science and technology, Ability to continue to educate him/herself. 8b 9a Consciousness to behave according to ethical principles and professional and ethical responsibility. 9b Knowledge on standards used in engineering practice. Knowledge about business life practices such as project management, risk 10a management, change management. 10b Awareness in entrepreneurship and innovation. 10c Knowledge about sustainable development. Knowledge about the global and social effects of engineering practices on 11a health, environment, and safety, Knowledge about contemporary issues of the century reflected into the field of 11b engineering. **11c** Awareness of the legal consequences of engineering solutions.

ECTS ALLOCATED BASED ON STUDENT WORKLOAD	BY THE COURS	E DESCR	IPTION
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course duration (lectures)	14	3	42
Off-the-classroom study (prep., and review)	14	6	85
Presentation	1	3	3
Off-the-classroom study for presentation	1	60	60
Off-the-classroom study for the final exam	1	60	60
Total Work	Load		249
Total Work Load / 2	5 (h)		9,96
ECTS Credit of the Co	ourse		10

Prepared by: Prof. Dr. Taner Akbay

Preparation date: 01.09.2020